768 research outputs found

    Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets

    Get PDF
    Management of forests for carbon uptake is an important tool in the effort to slow the increase in atmospheric CO sub(2) and global warming. However, some current policies governing forest carbon credits actually promote avoidable CO sub(2) release and punish actions that would increase long-term carbon storage. In fire-prone forests, management that reduces the risk of catastrophic carbon release resulting from stand-replacing wild-fire is considered to be a CO sub(2) source, according to current accounting practices, even though such management may actually increase long-term carbon storage. Examining four of the largest wildfires in the US in 2002, we found that, for forest land that experienced catastrophic stand-replacing fire, prior thinning would have reduced CO sub(2) release from live tree biomass by as much as 98%. Altering carbon accounting practices for forests that have historically experienced frequent, low-severity fire could provide an incentive for forest managers to reduce the risk of catastrophic fire and associated large carbon release events

    The metal-poor Knee in the Fornax Dwarf Spheroidal Galaxy

    Full text link
    We present alpha-element abundances of Mg, Si, and Ti for a large sample of field stars in two outer fields of the Fornax dwarf spheroidal galaxy (dSph), obtained with VLT/GIRAFFE (R~16,000). Due to the large fraction of metal-poor stars in our sample, we are able to follow the alpha-element evolution from [Fe/H]=-2.5 continuously to [Fe/H]=-0.7 dex. For the first time we are able to resolve the turnover from the Type II supernovae (SNe) dominated, alpha-enhanced plateau down to subsolar [alpha/Fe] values due to the onset of SNe Ia, and thus to trace the chemical enrichment efficiency of the galaxy. Our data support the general concept of an alpha-enhanced plateau at early epochs, followed by a well-defined "knee", caused by the onset of SNe Ia, and finally a second plateau with sub-solar [alpha/Fe] values. We find the position of this knee to be at [Fe/H]=-1.9 and therefore significantly more metal-poor than expected from comparison with other dSphs and standard evolutionary models. Surprisingly, this value is rather comparable to the knee in Sculptor, a dSph about 10 times less luminous than Fornax. Using chemical evolution models, we find that both the position of the knee as well as the subsequent plateau at sub-solar level can hardly be explained unless the galaxy experienced several discrete star formation events with a drastic variation in star formation efficiency, while a uniform star formation can be ruled out. One possible evolutionary scenario is that Fornax experienced one or several major accretion events from gas-rich systems in the past, so that its current stellar mass is not indicative of the chemical evolution environment at ancient times. If Fornax is the product of several smaller building blocks, this may also have implications of the understanding on the formation process of dSphs in general.Comment: 10 pages, 6 Figures, accepted for publication in Ap

    Physiology of Layer 5 Pyramidal Neurons in Mouse Primary Visual Cortex: Coincidence Detection through Bursting

    Get PDF
    L5 pyramidal neurons are the only neocortical cell type with dendrites reaching all six layers of cortex, casting them as one of the main integrators in the cortical column. What is the nature and mode of computation performed in mouse primary visual cortex (V1) given the physiology of L5 pyramidal neurons? First, we experimentally establish active properties of the dendrites of L5 pyramidal neurons of mouse V1 using patch-clamp recordings. Using a detailed multi-compartmental model, we show this physiological setup to be well suited for coincidence detection between basal and apical tuft inputs by controlling the frequency of spike output. We further show how direct inhibition of calcium channels in the dendrites modulates such coincidence detection. To establish the singe-cell computation that this biophysics supports, we show that the combination of frequency-modulation of somatic output by tuft input and (simulated) calcium-channel blockage functionally acts as a composite sigmoidal function. Finally, we explore how this computation provides a mechanism whereby dendritic spiking contributes to orientation tuning in pyramidal neurons

    Spin transfer switching of spin valve nanopillars using nanosecond pulsed currents

    Full text link
    Spin valve nanopillars are reversed via the mechanism of spin momentum transfer using current pulses applied perpendicular to the film plane of the device. The applied pulses were varied in amplitude from 1.8 mA to 7.8 mA, and varied in duration within the range of 100 ps to 200 ns. The probability of device reversal is measured as a function of the pulse duration for each pulse amplitude. The reciprocal pulse duration required for 95% reversal probability is linearly related to the pulse current amplitude for currents exceeding 1.9 mA. For this device, 1.9 mA marks the crossover between dynamic reversal at larger currents and reversal by thermal activation for smaller currents

    Intrinsic high aerobic capacity protects against lipid induced hepatic insulin resistance [abstract]

    Get PDF
    Hepatic steatosis is commonly linked to hepatic insulin resistance. However, recent studies have found that increased hepatic triacylglycerol (TAG) accumulation is not always associated with impaired hepatic insulin signaling, leading to a hypothesis that partitioning of lipids into TAG in the liver matched with high rates of fatty acid oxidation (FAO) under high lipid exposure conditions may protect against hepatic insulin resistance. We examined this hypothesis in the livers of high and low capacity running (HCR/LCR) rats which were created by artificial selection based on differences in intrinsic aerobic capacity

    Landslide Susceptibility Map of Magoffin County, Kentucky

    Get PDF
    The purpose of this map is to identify landslide-prone areas in Magoffin County, Kentucky, in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps

    Aligning ecology and markets in the forest carbon cycle

    Get PDF
    A forest carbon (C) offset is a quantifiable unit of C that is commonly developed at the local or regional project scale and is designed to counterbalance anthropogenic C emissions by sequestering C in trees. In cap-and-trade programs, forest offsets have market value if the sequestered C is additional (more than would have occurred in the absence of the project) and permanent (sequestered within the project boundary for a specified period of time). Local management and ecological context determine the rate of C sequestration, risk of loss, and hence the market value. An understanding of global C dynamics can inform policy but may not be able to effectively price an ecosystem service, such as C sequestration. Appropriate pricing requires the assistance of ecologists to assess C stock abundance and stability over spatial and temporal scales appropriate for the regional market. We use the risk that sequestered C will be emitted as a result of wildfire (reversal risk) to show how ecological context can influence market valuation in offset programs

    The Flow of Family Transitions of Australian Families

    Get PDF
    Family structure disruption has been linked to negative child educational and health outcomes (Perales et al. 2016). Australia has relatively stable families, but income disparities between Australians are widening, and single-parent families make up a large proportion of families living in poverty. Cohabitation is also common in Australia with approximately three-quarters of marriages preceded by cohabitation. If substantial family structure churning affects Australian children this may expose a need for special policy interventions aimed at family creation and dissolution to ameliorate the negative effects of such stressful experiences. To highlight family structures and transitions Australian children experience, we use Sankey flow diagrams charting data from ‘Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC)’ (Gilding 2001). We track children from birth to 11 years old using waves 1-6 and population weights to represent 183,521 children born into Australian families

    Axion monodromy in a model of holographic gluodynamics

    Full text link
    The low energy field theory for N type IIA D4-branes at strong 't Hooft coupling, wrapped on a circle with antiperiodic boundary conditions for fermions, is known to have a vacuum energy which depends on the θ\theta angle for the gauge fields, and which is a multivalued function of this angle. This gives a field-theoretic realization of "axion monodromy" for a nondynamical axion. We construct the supergravity solution dual to the field theory in the metastable state which is the adiabatic continuation of the vacuum to large values of θ\theta. We compute the energy of this state and show that it initially rises quadratically and then flattens out. We show that the glueball mass decreases with θ\theta, becoming much lower than the 5d KK scale governing the UV completion of this model. We construct two different classes of domain walls interpolating between adjacent vacua. We identify a number of instability modes -- nucleation of domain walls, bulk Casimir forces, and condensation of tachyonic winding modes in the bulk -- which indicate that the metastable branch eventually becomes unstable. Finally, we discuss two phenomena which can arise when the axion is dynamical; axion-driven inflation, and axion strings.Comment: 43 pages, 10 figures. v2: references update
    • …
    corecore